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In this research, the friction and wear of AA7075 nanocomposites reinforced with graphene and graphite were studied. Graphene’s
inclusion dramatically enhanced the material’s mechanical characteristics, friction, and wear resistance. AA7075 is strengthened
with less graphene, and AA7075, reinforced with more graphite, exhibits similar wear and friction behavior. Wear rate and
coefficient of friction predictions for AA7075-graphene nanocomposites were made using five machine learning (ML) regression
models. ML simulations reveal that the wear and friction of AA7075-graphene composites are most sensitive to the proportion of

graphene presence, the loadings, and the hardness.

1. Introduction

Due to their high quality, nanocomposites have found wide-
spread use in a wide variety of technological applications.
Weight-critical aerospace and automotive industries and tri-
bological applications favor AA7075 nanocomposites over
monolithic AA7075 [1, 2]. While AA7075 is highly stiff,
strong, and corrosion resistant, it has poor tribological quali-
ties and will seize in dry sliding or with inadequate lubrication.
Nanocomposites of ceramics, graphene, graphite, and fiber-
reinforced AA7075 have excellent mechanical and tribological
properties [3]. Numerous studies have looked into the effects
of incorporating ceramic particles into AA7075 composites to

boost the materials’ strength and tribological behavior. Powder
metallurgy, centrifugal, stirring, and even traditional casting
are just some of the many transformations applied to these
nanocomposites [4]. The disadvantages of these composites
include the difficulty in evenly dispersing the ceramic particles
throughout the AA7075 matrix, increased brittleness, and
decreased machinability. As a low-cost alternative with the
potential to reduce seizing propensity, friction, and wear,
AA7075-graphite composites have attracted a lot of interest.
Casting, spray depositing, and powder metallurgy is common
approaches to working with these nanocomposites. Therefore,
the graphite particles embedded in AA7075-graphite nano-
composites improve the tribological performance of sliding
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applications. Large graphite particles can decrease the mechan-
ical properties of self-lubricating AA7075-graphite nanocom-
posites. Recent studies explain graphene-infused, self-lubricating
AA7075-graphene nanocomposites that improve tribological
and mechanical properties.

Graphene consists of sheets of single-atom carbon
arranged in a honeycomb pattern [5]. Graphene is unlike
other materials because of its unusual friction and wears
features. Because of its atomically flat surfaces and ultrathin
layers, graphene has applications at both the nano and
microscales. Graphene lasts a long time since it has a high
mechanical strength [6]. Using the nanoindentation method
of atomic force microscopy, Arun et al. [7] determined that
graphene is the most robust material yet quantified for
monolayer graphene membranes. They found that the tensile
strength of defect-free monolayer graphene was 131 GPa,
whereas Young’s modulus (E) was 1 MPa. Researchers [8]
conducted their research and found that the bilayer has a
tensile strength of 127 GPa, the trilayer has a tensile strength
of 102 GPa, and Young’s modulus of each is 1.05 and 0.99 GPa.
Nanocomposites are composite materials that improve the
mechanical and material properties produced by combining a
matrix and reinforcing components, such as the matrix’s tough-
ness and flexibility and the reinforcement’s strength and moduli.
Unlike further carbon-based struts like graphite or else carbon
nanotubes, graphene’s plate structure makes its dispersion in the
matrix phase easier. Graphene is an appealing choice for use as
the reinforcing phase in self-lubricating nanocomposites
because of its high mechanical capabilities, low cost, and good
electrical, optical, and thermal properties.

Recent research [9, 10] has detailed the mechanical prop-
erties of graphene-reinforced AA7075 nanocomposites and
the technologies used to make them. Graphene distributed
throughout the metal matrix contributes to the nanocompo-
site’s mechanical strength. The aggregation of particles may
negatively affect the stability, which causes a nonuniform
dispersion. Examples include the AA7075-graphene nano-
composites, which saw a 62% increase in tensile strength
compared to the AA7075 base alloy when using graphene
nanosheets as the reinforcing phase [11]. According to studies
by Ul Haq and Anand [12], adding graphene at 3 and 5 wt% to
an aluminum AA2124 matrix boosted the material’s tensile
strength by 20.4% and 21.6%, respectively, while also increas-
ing the yield strength by 104% and 127.6%. Adding graphene
nanoplatelets at a weight percent of 0.1-1 to an aluminum
AA7068 matrix has been shown to boost the material’s tensile
strength, as reported by Ul Haq and Anand [13]. But others,
such as Hasan et al. [14] and Patel et al. [15] found that adding
graphene to AA7075 nanocomposites reduced the material’s
tensile strength.

Friction, wear, and lubrication are all aspects of tribology,
which studies the relationship between moving and contact-
ing surfaces and the forces acting upon them. The tribologi-
cal behavior of AA7075-graphene nanocomposites has been
the subject of several recent reports [16, 17]. The tribosurface
of AA7075-graphene nanocomposites is coated with soft
lubrication layers of graphene, making it suitable for sliding
applications after a brief break-in period. A Gr-rich solid
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lubricating layer at the contact as more graphene smears
out during further sliding. The lubrication layer isolates
moving surfaces to prevent metal-on-metal interaction, sim-
ilar to self-lubricating AA7075-graphite matrix composites,
decreasing wear and friction. It predicts that multimaterial
composites with graphene than graphite particles will have
higher tribological performance [18]. It is because of the for-
mer’s increased mechanical strength and hardness. Tribological
behavior is of paramount importance in the design and syn-
thesis of machine components involving sliding, rotating,
or oscillating contacts since it is a system reaction rather
than a material feature.

Understanding the behavior of AA7075-graphene nano-
composites is crucial for scheming effective systems for tri-
bological approaches. It is an interesting process because the
wear and friction performance of the two materials depends
on variant material, mechanical, and tribological variables.
One-sample trials and simple 2-parameter correlations have
been the mainstays of research on AA7075-graphene nano-
composite wear behavior and friction. To perform this type
of study, the coefficient of friction (COF) or wear resistance
is plotted against a solitary factor, while all other experimen-
tal variables are held constant. It is often insufficient and
inefficient to develop thorough knowledge when complicated
tribological relationships are present simply. While the 2-
parameter analysis has limitations, circumvent it by using a
data-driven method that simultaneously considers numerous
factors’ impact across a larger domain.

It demonstrates that a fundamental obstacle to tribologi-
cal research is the lack of calculations from the first rules of
physics and chemistry. Data-driven AT and machine learning
(ML) algorithms have allowed scientists to look at higher
order correlations between several variables than was possi-
ble with the standard 2-parameter study. Complex ML mod-
els, such as the gradient boosting machine (GBM) and the
artificial neural network (ANN), use elaborate approaches to
understand the patterns in the dataset and produce accurate
predictions. Friction and wear of AA7075-graphene nano-
composites were studied by Yang and Buehler [19] under
different lubrication conditions, with the use of both separate
and combined models. Statistical methods explain the fric-
tion and wear processes of AA7075-graphene nanocompo-
sites. To better predict friction and wear and to identify
trends in the tribological properties of these materials, we
will employ experimental data to train ML models.

2. Mechanisms of Wear and Friction in
AA7075-Graphene Nanocomposites

Tribology is concerned with the study of wear and friction
because they are the most important causes of substantial
corrosion and energy loss in dynamic arrangements. Friction
and wear mechanisms in multiphase nanocomposites such
as AA7075-graphene are challenging to characterize. Using
AA7075-graphene nanocomposites as examples, the wear
and friction mechanisms were seen and measured.

COF or u is a standard metric for describing the resis-
tance to motion between contacting surfaces. The following
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equation, which factors in both the frictional forces (Ff) and
the load (N) bearing capacity, can be used to determine the
COF between two surfaces.

Fp FE+F, F, F

N N N Ty T Mt Ha (1)

Adhesion between the sliding surfaces (Van der Walls,
ionic, covalent, and metal bonds) contributes to COF [20].
Friction coefficient d fluctuates according to mechanical
properties, including solidity, strength, and modulus, by
the micro and macroscopic distortion of severities of the
tribosurface. Friction’s adhesion component is affected by
the asperity contact area among the rubbing surfaces. After
a short break-in period, a soft graphene tribofilm forms on
the AA7075-graphene nanocomposites tribosurface. The
actual severity contact area between nanocomposites and
the counter face lessens as a stable solid-lubricating graphene
coating forms. Due to the reduced metal-on-metal interac-
tion and decreased asperity contact area, the sticky compo-
nent of the COF falls considerably. Graphene’s addition to an
AA7075 matrix dramatically improves the material’s hard-
ness, tensile strength, and flexibility. Since steel is more rigid
than most other counter face materials, friction’s deforma-
tion or plowing component is declining.

Under varying loads, wear occurs when two surfaces
gradually lose material due to sliding against one another.
Inspecting the worn area can expose the primary wear pro-
cesses for a specific substantial combination. Most AA7075
nanocomposites’ wear in tribological applications falls into
adhesive wear, abrasive wear, and delamination wear [21].
Adhesion between the sliding surfaces leads to wear known
as adhesive wear. Displacement and surface fracture at the
asperity layer cause the material to break apart and move
between characters. As a result, AA7075 wears more slowly.
Several tribological tests [22] have shown that adhesive wear
is the dominant wear process for AA7075-Gr.

The operating situation and material attribute mainly
determine the significant wear process. Wang et al. [23] state
that the wear during sliding contact could range from insig-
nificant to severe, depending on the average load. The transi-
tion between these two wear regimes results in drastically
different wear behavior and happens at a critical load. In
the same way, the sliding velocity also shows a shift in its
wear pattern. A lower wear rate and the dominance of abra-
sion as the effective wear mechanism describe the mild wear
regime. Surface smoothness and the presence of tiny grooves
running slantways are telltale signs of abrasive wear on
AA7075-graphene nanocomposites. The graphene coating
continues to function and helps limit wear in light wear
[24, 25]. The wear rate increases dramatically as the load or
sliding speed increases, marking the shift from mild-to-severe
wear (outside the range of acceptable values). Because of this,
the lubricating coating is often irreparably harmed or loses its
ability to prevent excessive wear [26]. Exfoliation wear neces-
sitates poor mechanical characteristics due to inhomogeneous
mingling of the reinforcing phase, displacement accumula-
tion, and fracture at a subsurface layer. Delamination wear

causes thin laminates to discard as waste due to the instability of
crack propagation at the tribosurface’s subsurface. Exfoliation,
craters, and scratches are far less common on AA7075-
graphene nanocomposites than on base AA7075, according to
research by Li et al. [27] and Hossain et al. [28].

3. Variables Affecting Wear and Friction of
AA7075-Graphene Composites

The wear and friction of AA7075-graphene nanocomposites
are affected by tribological and material-specific factors.
Here, it uses conventional analysis to discuss how these fac-
tors affect friction and wear.

3.1. Material Variables. Variables in materials include their
makeup, microstructure, characteristics, and parameters
related to the production method. Considerations such as
industrial process, heat treatment, graphene weight, gra-
phene type, thickness, matrix arrangement, and mechanical
characteristics are all relevant when studying the friction and
wear of AA7075.

3.1.1. Impact of the Heat Treatment and Manufacturing
Method. According to theoretical studies, increasing the
graphene content of AA7075 composites can significantly
enhance the material’s mechanical and tribological character-
istics. These advancements are impossible to achieve without
a uniform distribution of graphene in the AA7075 matrix and
a robust interfacial connection between the two. That is why
AA7075-graphene nanocomposites require careful attention
during production and heat treatment. Defects in manufactur-
ing include nanoparticle aggregation, pore formation, poor
interfacial connection, carbide creation, and cracks in
subsurface regions. Casting, severe deformations, additive
manufacturing, and powder metallurgy are all standard tech-
niques for making these nanocomposites. Production of
AA7075-graphene nanocomposites has thus far relied
most heavily on powder metallurgy. A filthy AA7075-
graphene surface and oxidation of the AA7075 matrix are
expected outcomes of this method due to the incorrect selec-
tion of process variables. There has been a shift away from
casting AA7075-graphene nanocomposites in favor of pow-
der metallurgy. This production method can be inexpensive
but does not permit much management over the graphene’s
distribution in the AA7075 matrix. Casting procedures
include high processing temperatures encouraging interfa-
cial interactions between AA7075 and graphene. In addition,
graphene nanoparticles are prone to segregation and accu-
mulation due to the density mismatch between AA7075 and
graphene. The weakness of these nanocomposites is due to
porosity, which concerns the gravity casting method. All of
these casting defects might reduce the quality of the casting
in terms of mechanical and tribological characteristics.
Microstructural flaws like crashes and breakages may occur
during the production of AA7075-graphene composites
using a robust plastic deformation strategy. The porosity
and low flexibility of AA7075-graphene composites may
make it challenging to create complex shapes using additive
manufacturing techniques such as selective laser melting.
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FiGure 1: Impact of graphene wt% on (a) coefficient of friction and (b) wear rate.

AA7075-graphene composite’s mechanical and surface qual-
ities are very variable and dependent on the heat treatment
methods and other factors.

3.1.2. Impact of Graphene Content. Graphene improves the
tribological performance of composites by acting as a matrix
material. Graphene, whether in a single sheet or several, acts
as a solid lubricant when incorporated into a matrix for use in
sliding mechanisms. The tribological characteristics of these
nanocomposites modify by the method graphene changes
their mechanical properties.

(1) Solid Lubricating Agent Graphene. Graphene addition
to AA7075-graphene nanocomposites decreases COF and
wear rate by improving the hardness and encouraging tribo-
film formation.

Orowan reinforcement, load transmission, grain refining,
and a mismatch in coefficient of thermal expansion (CTE)
among graphene and the AA7075 make graphene-reinforced
nanocomposites more challenging to work through. The addi-
tion of graphene decreases the wear rate because it improves
hardness, which is inversely related to wear as calculated by the
Archard equation. We can see in Figure 1(a) that the wear rate
of AA7075-graphene nanocomposites steadily goes down as
the graphene content increases. The wear rate reduces rapidly
when the graphene content is lower, and then at a higher
critical graphene content, the wear rate decreases more gradu-
ally. After the optimal graphene content attains, a slight wear
rate acceleration obtains. It may be because AA7075-graphene
becomes more brittle after reaching a specific graphene con-
centration in the matrix. This marginal improvement, however,
pales in comparison to the substantial wear rate improvement
that would result from reducing the graphene content.

When bulk graphene nanosheets disperse throughout the
tribosurface through sliding wear, and create a graphene-rich
tribofilm. By reducing the contact between the asperities of

the contact surface and the maximum peak (R,) and mini-
mum valley (R,) of the surface profile, a stable micro tribo-
film can reduce wear. The lubricating properties of the
tribofilm lessen the need for metal-on-metal contact, which
in turn facilitates the friction heat produced by the sliding
contact. Graphene addition consistently reduces the COF in
AA7075-graphene nanocomposites, as seen by the COF
against graphene content graphs (Figure 1(b)). Changes in
COF are dramatic after even a little increase in graphene
concentration from 0 wt%. A threshold graphene concentra-
tion got, after which additional surges in graphene content
lead to a decrease in COF, but one less severe than before.

Using graphene (graphene nanoplatelets, oxide, micropla-
telets, flakes, monolayer Gr, rGO, and multilayer graphene) as
the reinforcing phase reduces friction and wear, with the
degree of reduction depending on the number of graphene
layers and the kind of graphene utilized. It demonstrates that
the frictional force decreases as the number of graphene layers
increases. By allowing interlayer sliding, the frictional force
lessens in multilayer Gr, graphene nanosheets, and graphene
nanoparticles. Furthermore, Roccapriore et al. [29] have exper-
imentally demonstrated that three or four-layer graphene is
more resilient than monolayer graphene and resistant to
sliding wear. The superior friction performance of AA7075-
graphene composites over graphite nanocomposites can be
substantially attributed to interlayer sliding between graphene
nanosheets.

(2) Mechanical Properties of Graphene and Its Incorporation.
The mechanical characteristics of AA7075 nanocomposites,
such as hardness, strength, and Young’s modulus, vary with
reinforcing particle size. The mechanical properties of
AA7075 diminish when big reinforcing particles or particle
aggregation promote defects like pores and cracks. In Figure 2,
graphene content is compared to tensile and hardness
strengths for AA7075-graphene nanocomposites in Figure 1.
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FIGURE 2: Impact of graphene content on (a) tensile strength and (b) hardness of AA7075-graphene nanocomposites.

As graphene adds, the material’s tensile strength and hardness
increase up to a certain point but then begin to decrease.

Mechanical qualities in AA7075-graphene nanocompo-
sites improve by ensuring that graphene is evenly distributed
and oriented throughout the composites. Researchers [30]
found that the increased strength of composites can be attrib-
uted, in part, to the fact that the graphene nanoparticles (GNPs)
are dispersed evenly throughout the AA7075 composites,
allowing for efficient load transfer. They also discovered that
mechanical behavior degraded and graphene shearing at the
tribosurface increased while utilizing 1.2 wt% graphenes as the
reinforcement. They reasoned that the GNPs could not usually
diffuse across the matrix due to the increased weight percent-
age. Agglomeration expands porosity and cracks and degrades
the structure, as seen by Zhao and Fang [31] when more than
1.2wt% graphene adds. Furthermore, substantial flaws in
AA7075-graphene nanocomposites are promoted by graphene
agglomeration, leading to premature composite failure [32].

The higher strength of AA7075-graphene nanocompo-
sites results from several different mechanisms, such as mis-
match in CTE, load transmission, grain refining, and Orowan
reinforcing [33]. The CTE mismatch enhances the interfacial
prismatic punch of dislocations, increasing the composites’
strength. High-aspect-ratio graphene reinforcements are the
most effective at transmitting loads because they form strong
bonds with the matrix. Increased interfacial contact between
GNPs and the AA7075 matrix attain by their 2D structure and
crumpled surface [34]. Hall-Petch connection [35] explains
why grain refining makes a difference in strength. By intro-
ducing nanoparticles like GNPs, the Orowan bypass mecha-
nism creates residual dislocation loops, which increase
strength via repulsive back stress [36].

3.1.3. Impact of the Matrix Arrangement. The characteristics
of the AA7075 utilized as the matrix affect the mechanical

and tribological performance of AA7075-graphene compo-
sites. Strength, elasticity modulus, and hardness are only
some of the mechanical qualities that improve upon by mix-
ing pure AA7075 alloys with other alloying elements [37].
Each AA7075 alloy has distinct microstructural features that
influence how much graphene disperses in the matrix, how
strong the links are between the matrix and the reinforcing
phase, and whether or not a chemical procedure is even pos-
sible. Properties like wear resistance and the critical load at
which moderate to severe wearing occurs define by the
AA7075 in AA7075-graphene nanocomposites (Figure 3(a)).

Average wear and COF under similar loading and testing
circumstances for several types of unstrengthened AA7075
alloys and comparable graphene-reinforced (0.25-0.5wt%)
composite are displayed in Figure 3. Compared to their unre-
inforced counterparts, AA7075-graphene composites consis-
tently showed lower friction and wear behavior (Figure 3(b)).
Some alloys have a more noticeable discrepancy between COF
and wear rate than others. Also, it is not always the case that
reducing COF would slow down your wear rate or vice versa.
Though reduced by adding 0.3% graphene to AA7075, the
wear rate is slightly lower.

3.2. Tribological Variables. In this post, we will go over how
various factors in tribological tests can impact the wear
and friction performance of AA7075-graphene composites.
Before conducting tribological testing, a few considerations
are typical load, sliding distance, speed, and lubrication status.

3.2.1. Impact of Normal Load. According to Karathanasopoulos
etal. [38], the average load is critical in determining when wear
will progress from mild to severe. Average load’s effect on
AA7075-graphene and AA7075-graphene nanocomposites
COF and wearing rate in Figure 4. More force results in better
nano- and microscale asperity contact between the sliding
surfaces. The tribosurface will plastically deform more when
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there are more asperities in connection. All of them contribute
to a greater degree of resistance. The load dependence of wear
and friction qualities may be more nuanced in AA7075-
graphene nanocomposites because they are a two-stages self-
lubricating material. Because the softer phase on the tribosur-
face might stretch out more with an increase in load. Since this
is the case, AA7075-graphene nanocomposites have been
shown in several studies to raise or reduce COF under normal
load (Figure 4(b)).

Furthermore, it indicates that under constant loads,
friction and wear were greater in AA7075-graphene compo-
sites with a higher weight percent of graphene than in those

with a much lower weight percent of graphene (Figure 4).
AA7075-graphene composites have advantageous mechanical
properties. The graphene phase incorporated in the metal
disperses via scraping the tribosurface. Repeated rubbing
can cause the development of a stable Gr-rich coating, which,
in comparison to the starting state, lowers the amount of wear
and friction among the stressed surfaces. However, after a
solid graphene covering has developed, friction and wear
will likely rise under typical loading settings. When the gra-
phene coating is unharmed, friction and wear reduce, allow-
ing for mild wear at lower specific loads. When subjected to
more significant stresses, the graphene-rich layer is frequently
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damaged beyond repair or loses its ability to prevent the
extreme wear that is otherwise detected. Researchers [39]
found that the AA7075-graphene nanocomposite’s wear
mechanisms change from abrasive to delamination wear as
the load increases. Surface roughness and shear strain were
also higher in conjunction with high normal loads. Wear rate
and COF for AA7075-graphene nanocomposites predicts
with the help of an ANOVA.

3.2.2. Impact of Sliding Distance. Calculating the impact of
the sliding distance of wear and friction is complicated due to
the AA7075 matrix composites. The solid—fluid layer’s pro-
duction, load, and sliding properties may complicate the
relationship. Figure 5 displays the correlation between slid-
ing distance, wear rate, and COF for AA7075-graphene, and
AA7075-graphite multimaterial composites. The COF and
the rate of wear for AA7075-graphite nanocomposites both
increased with sliding distance. These [40] result from long-
term sliding due to microthermal softness triggered by interface
heat and a diminished graphene coating on the tribosurface.

Constantly decreasing the COF and wear rate by sliding
AA7075-graphene nanocomposites is a viable strategy. The
complex graphene components that protrude from the surface
of AA7075-graphene composites are the root of their wear
resistance. This relationship links the wear rate and the sliding
distance inversely. Stable graphene layers on the tribosurface
further reduce the COF by allowing for a longer sliding dis-
tance with the same amount of effort. Sliding distance affects
wear rate more than the COF, as shown by the ANOVA results
for AA7075-graphene composites tribological data by Li et
al. [41].

3.2.3. Impact of Sliding Speed. Frictional heat generates at a
constant rate, and the tribosurface temperature rises in
response to an increase in sliding velocity. This warming
helps the matrix soften micro thermally. In addition, it

facilitates the production of oxides and the dissolution of
microstructure-associated precipitates, hence lowering flow
stress. All of them contribute to the accelerated AA7075
nanocomposite wear rate. Figure 6 displays the correlation
between sliding velocity and wear, and COF of AA7075-
graphene and AA7075-graphite nanocomposites.

If the speed is low, the wear mechanism is relatively high;
if it is high, the wear mechanism is quite severe. Low wear
rates are reported in AA7075-graphene nanocomposites at
low sliding speeds because of the fully functional graphene
lubricating coatings. Wear rate briefly reduces with sliding
speed [42] in the low-wear regime of AA7075-graphite
nanocomposites. Wear increases for AA7075-graphene and
AA7075-graphite nanocomposites as sliding speeds approach
critical values. However, while having a more excellent
reinforcing percentage, the wear rates found in AA7075-
graphene nanocomposites were significantly lower.

In contrast, up to a certain sliding speed, the COF of
AA7075-graphite and AA7075-graphene nanocomposites
decreases. Increasing the sliding speed reduces the adhesive
component of friction in addition to the lubricating provided
by graphene or graphite-rich layers. Sliding contacts generate
frictional heat, further reducing friction as speed increases.
Even when sliding slowly, rises in strain rate raise flow hard-
ness and strength [43]. COF and wear decrease when the
contact area among mating surfaces diminishes.

4. Friction and Wear Behavior of AA7075-
Graphene and AA7075-Graphite Composites

As indicated by a review of tribological performances from
several studies, graphene as the reinforcing phase requires a
substantially lower weight percentage than graphite to achieve
the same COF and wear rate under similar loading conditions.
When bigger graphite particles introduce into the AA7075



0.32

0.30
0.28 <
0.26 4

0.24

COF

0.22
0.20 |
0.18 -
0.16 i i

o
0.14 <o

— .
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Sliding speed (m/s)

& AlSi10 Mg/0.5 wt% Gr
4 A359/6 wt% Gr

(a)

Journal of Nanomaterials

0.040

0.035 —
0.030 — 5] 5] o
0.025 —
0.020 — <

0.015

Wear rate (mm?/m)

0.010 g

0.005

0.000 -1 r r rr T rr 1 r 1 *t T * T 7
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Sliding speed (m/s)

© AA6061-0.3 wt% Gr flake
» AA6061-B4C-0.25 wt% Gr

(b)

o AA6061/7 wt% Gr

FiGure 6: Comparison between sliding speed: (a) coefficient of friction and (b) wear rate.

matrix, the material’s mechanical characteristic—hardness,
flexibility, and strength—suffer severely. As a result of the
AA7075 matrix, large graphite particles prefer to cluster
together. Because of the previous factors, these composites
may not be as effective as AA7075-graphene composites in
terms of tribological performance. In contrast, smaller gra-
phene nanoparticles scatter more uniformly in the AA7075
matrix. The addition of graphene nanoparticles to AA7075
composites significantly boosts their mechanical properties
and, by extension, tribological performance. These hypotheses
explain the superior performance of nanoparticle-reinforced
AA7075-graphene composites in wear and friction tests.

It is intended to statistically evaluate the hypothesis that a
much lower weight percent of graphene as the reinforcement
in the AA7075 matrix can exhibit the same frictional behavior
as a much bigger weight percent of graphite using the experi-
mental results from the previous investigations. By employing
the life cycle assessment function in IBM SPSS Statistics, we
compared COF data for AA7075-graphite (10 wt%) and
AA7075-graphene (0.5wt%) under identical loading condi-
tions to ascertain whether or not the COF values of the paired
combinations is comparable. For AA7075-graphite compo-
sites, the mean and standard deviation of the COF were
0.1968 and 0.0862, while for AA7075-graphene composites,
these values were 0.2047 and 0.0603. These numbers are rep-
resentative of 33 datasets. According to the central limit for-
mula, the sample size of the trial was sufficient to guarantee a
normal approximation. In the linear component analysis, the
p-value for the linear component was 0.77. Hence, the null
hypothesis was not rejected (since a p-value less than 0.05 are
considered essential). It can be concluded with 95% confi-
dence interval that there is no significant difference in the
mean COF value of the AA7075-graphene (5wt%) and
AA7075-graphite (10 wt%). The results suggest that the gra-
phene reinforcement phase in the AA7075 matrix may offer

the same features as a greater quantity of graphite in the
AA7075 matrix under identical tribology settings.

5. Methods and Materials

This study provides the improved performance and refine-
ment of the ML approach for calculating friction and wear.
Data gathering, processing, model creation, and parameter
optimization for various ML models are covered here.

5.1. Acquisition of Data and Input/Output Factors. The accu-
racy of ML predictions is highly dependent on the quality of
the data employed to practice the models. Building ML mod-
els is done with a sizable, well-curated dataset from multiple
sources, including various input—output correlations. Diver-
sifying your data sources is advised, as over-reliance on
information from a single source can reduce the models’
generalization ability. It takes a lot of time and effort to set
up a battery of tribological testing rigs and prepare samples
of widely variable material characteristics that analyze to yield
the required data. In order to develop reliable ML representa-
tions and have amassed tribological behavior data for Gr-
enhanced AA7075 composites from the existing literature
[20]. The developed ML models that can forecast COF and
wear rate based on analyses of datasets, including 432 and 390
specimen data points, respectively. Tribological and material
characteristics assess as predictors in the established regression
models. Several variables consider, including graphene con-
centration, AA7075 concentration, SiC concentration, hard-
ness, tensile strength, graphene type, graphene production
process, heat treatment, flexibility, density, and many more.
Consideration of sliding distance, load, velocity, counter face,
and tribological testing technique. There were both categorical
and numeric inputs; examples include graphene kind, produc-
tion method, heat treatment, counter face, and tribotesting
method.
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5.2. Data Preprocessing and Standardization. Data prepara-
tion includes tasks, including cleansing, repairing missing
and odd values, randomizing, normalizing, and splitting
the data into training and testing sets. While handling the
share of data preprocessing and relying heavily on Python
and its many available tools. Appropriate processes manually
deal with missing and abnormal values in the datasets. We
mixed up the data to prevent unintentional biases from
entering the ML models. Getting the inputs into more con-
sistent numerical values increases the adaptability of created
system. Robust scaler, a tool for normalizing data and scaling
its features to account for outliers, was used for this purpose.
For the purpose of developing ML regression models, it is
important to split the dataset into a training set and a test-
ing set.

5.3. Machine Learning (ML) Models. If we have a set of input
factors, supervised ML-trained regression models may be
able to predict a result. To forecast the wear rate and friction
of AA7075-graphene composites based on 15 materials and
input parameters, developed five ML regression models
(ANN, KNN, random forest (RF), support vector machine
(SVM), and GBM). For ML analysis and model creation,
Python and the sci-kit-learn library utilize. Our earlier studies
[25-27] provide detailed coverage of the ML above models.

To make predictions, nonparametric KNN regression
models use the training data points closest to the target value
(neighbors). Forecasts can be made with KNN, an acronym
for “k nearest neighbors,” by looking at how similar instances
are in a particular training set. Standard methods for tuning
the KNN regression model include modifying the number of
neighbors tested and the importance placed on the compar-
ative distance among points. The KNN model’s responsive-
ness to new data points may be influenced by overfitting or
underfitting if » neighbors are kept relatively small.

To forecast outcomes, SVM regression models plot data
on hyperplanes of increasingly finer granularity. Given that
these hyperplanes exist in the high-dimension input data
space, SVM can deal with complicated nonlinear relation-
ships. Various kernel functions (such as the linear,

polynomial, sigmoid kernel, radial basis function (RBF), etc.)
utilize when structuring data on hyperplanes. Previous studies
[1, 6] suggested that the RBF function worked better for tribo-
logical data. Two variables, the kernel coefficient (y) and the
regularization factor (C), determine how well an SVM model
performs. When there are many input variables and only a few
observations, SVM models nevertheless perform well.

Regression models based on ANNs are cutting-edge tools
because of their ability to detect and incorporate nonlinear
correlations into predictions. This model’s learning strategy
equates to the human brains. Many materials science and
tribology areas have succeeded with ANN models. To bridge
the gap between the input and output layers in an ANN
model, multiple “neurons” or “intermodal units” are scat-
tered throughout several “hidden” layers. It is a complex
structure of layers and intermodal units that processes input
into meaningful insights. In developing our ANN models,
we explored the possibility of using multilayer perceptron
(MLP), which process data in a feed-forward fashion. Fig-
ure 7 depicts an ANN’s feed-forward MLP regressor design.
In this research, three-tiered hidden layers use in the ANN
regression models. Ten intermodal units (neurons) employ
in each concealed layer. After extensive experiments, we
determined that tan 4 and ReLU were the best activation
functions for the ANN techniques used to forecast COF
and wear rate.

The prediction model in GBM and RF models uses
ensemble techniques based on decision trees. Regression
models on decision trees for tribological data. The decision
trees used in these models formulate in fundamentally differ-
ent ways. While GBM uses a sequential approach, RF main-
tains unpredictability in data selection for creating decision
trees. Bagging and boosting are the processes used by RF and
GBM for this reason. Efficiency is augmented, and resilience is
grown in RF models by avoiding overfitting, thanks to the
bagging method. Increasing the number of features and depth
of the decision trees in a model can improve its performance.
Each tree in the boosting mechanism has its loss function
(which can be arbitrarily differentiable) optimized to correct
the errors of its predecessor. Since this is the case, GBM is an



10 Journal of Nanomaterials

TasLE 1: Coefficient of friction optimization models.

Chosen factors

Activation function: tan s, a=0.013, hidden layers = (10,10,10)
Number of considered neighbors = 6, weights = “uniform”

Type name

Artificial neural network
k-Nearest neighbor
Maximum features =5, n_estimators = 80
Kernel = RBF, y=0.09, C=100
Learning rate = 0.9, maximum-depth = 3, n_estimator = 150

Random forest
Support vector machine
Gradient boosting machine

RBF, radial basis function.

TaBLE 2: Wear rate, optimum models.

Chosen factors

Activation function: tan h, @ =0.05, hidden layers = (10,10,10)
Number of considered neighbors = 4, weights = “uniform”

Type name

Artificial neural network
k-Nearest neighbor
Maximum features = 6, n_estimators = 30
Kernel =RBF, y=0.3, C=100
Maximum depth =8, learning rate = 0.02, n_estimator = 150

Random forest
Support vector machine
Gradient boosting machine

RBF, radial basis function.

TaBLE 3: Performance of coefficient of friction prediction models.

Machine learning model ANN KNN RF SVM GBM
Mean absolute error 0.0342 0.0415 0.0252 0.0347 0.0225
Mean squared error 0.0038 0.0047 0.0014 0.0035 0.0013
Root mean squared error 0.0625 0.0695 0.0375 0.0593 0.0367
R* value 0.8943 0.8695 0.9637 0.9043 0.9642

GBM, gradient boosting machine; SVM, support vector machine.

excellent method for exploring complex causal relationships.
It is necessary to optimize their maximum depth, learning
value, and some boosting stages (1 estimator).

5.4. Optimization of the Machine Learning Models. It is
essential to carefully optimize the created ML models to max-
imize their prediction performance. In the previous para-
graph, we covered the topic of the factors of many models
that need optimum. The grid and cross-validation to fine-
tune our prediction models’ variables were used. These opti-
mization techniques again to run the prediction algorithms
with different values for each input parameter were employed.
Tables 1 and 2 display the optimal optimization parameters
for forecasting wear rate and COF. The complexity of an ANN
depends on various factors. The activation function calculates
the weightage amount of input variables for an ANN model.
The best results were when attempting to forecast COF using
an ANN model with three hidden layers and 10 neurons per
layer, regularization variables @ =0.012, and activation func-
tion tan h (Table 1).

Similarly, optimal settings for other models manipulate
and improve their predictive abilities with concerning.

6. Result and Discussion

In this part, we report the data from our ML analyses and
assess how well they perform using standard performance
evaluation criteria. Also highlighted are the results of a data-
driven investigation into the impact of various input variables
on wear and friction in AA7075-graphene nanocomposites.

6.1. Result for COF Prediction. Several commonly employed
statistical performance measures for gauging an ML regres-
sion model’s performance; include the coefficient of determi-
nation (R*), mean absolute error (MAE), mean square error
(MSE), and root mean square error (RMSE). A regression
model with an R* value between 0 and 1 and >0.9 indicates
a very accurate prediction model. With R* < 0. The R* values
for these five COF prediction models ranged from 0.8692 to
0.9643, and their error rates were low (Table 3). However, the
GBM (R*=0.9642) and RF (R?=0.9637) models (both based
on a decision tree) produced the best prediction results. It
determined that the GBM and RF models’ bagging and boost-
ing processes worked well to deal with friction data containing
categorical factors.

As regards accuracy in predicting COF, a GBM model
with 150 boosting steps and a max deepness of two for sepa-
rate regression performed the finest. Using the COF data,
learning rates of 0.8 and above, together with other enhanced
characteristics, were successful. Figure 8 shows how the COF
measured in the lab compares to the COF predicted by the
top GBM model. The anticipated and experimental COF
values correlated highly well.

A set of 80 decision trees in the RF model, with four
characteristics assessed at the optimal split, yielded the best
R? value (0.9637), indicating the highest prediction perfor-
mance (max features). The KNN based on distance functions
was the simplest of the created models but also the least
effective. The better predictive performance in the KNN
model attains by assigning equal weight to a set of five
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FiGure 9: Predicting the coefficient of friction based on the relative relevance of input factors (feature importance).

neighboring data points used to construct a forecast for a
novel data point. However, compared to other ML models,
the model still had trouble dealing with the complicated COF
dataset. The ANN model has an R? of 0.8943, indicating that
it accurately predicted the COF with high confidence. The
accuracy of the ANN model’s predictions is satisfactory, with
just modest error terms.

6.2. Impact of Input Parameters in the Forecasting of
Coefficient of Friction. The significant feature of the RF
model demonstrates forecasting the COF for AA7075-
graphene nanocomposites. It shows that every input variable
is crucial (Figure 9). If each factor on the feature importance
analysis chart gives the same weight, the final score will be 1,
as this is the minimum acceptable value. Individuals are
more likely to contribute significantly to output prediction
if their scores are higher, while individuals with lower scores

are less likely to make any contribution. For the chosen input
variables to affect the COF, they must all have non-zero
values (Figure 9). The most important predictors of COF
were graphene concentration, hardness, and load.

The graphene weight percentage is critical to further the
self-lubricating effect and decrease friction, as described. For
COF forecasting, the hardness of the material was also a
significant factor. Research also demonstrated that COF
forecasts for AA7075-graphene nanocomposites significantly
impact the type of graphene employed.

6.3. Wear Rate Prediction. Table 4 displays the criteria used
to evaluate the performance of ML models used to forecast
wear rates for AA7075-graphene nanocomposites. R* values
for the top-performing models were between 0.8902 and
0.9472. Among these were GBM, ANN, and RF. Furthermore,
the KNN model based on distance functions incorrectly



12

TaBLE 4: Performance of wear rate forecast models.

Journal of Nanomaterials

Machine learning

ANN

KNN

RF

SVM

GBM

Mean absolute error
Mean squared error
Root mean squared error
R? value

0.0105
0.0009
0.0273
0.9341

0.0143
0.0027
0.0513
0.7357

0.0093
0.0010
0.0321
0.9045

0.0131
0.0012
0.0342
0.8902

0.0105
0.0007
0.0246
0.9472

GBM, gradient boosting machine; SVM, support vector machine.
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FIGURE 10: Analyzing the wear rate and contrasting it with experimental values.

estimated the wear rate because it oversimplified the compli-
cated relationships in wear data. In spite of the complexity of
the dataset involving wear rates, ANN performed admirably.
The best overall prediction performance was achieved by the
GBM model built on top of a decision tree. The typical could
estimate the wear rate with a max accuracy of 94.69%. Despite
definite factors in the wear rate, the GBM regression model’s
boosting method produced reliable outcomes.

Figure 10 compares the top GBM regression model’s
prediction and the observed (experimentally measured)
wear rate. Results showed a strong relationship between pre-
dicted and measured wear rates. Similarly successful in pre-
dicting wear was RF, another decision tree-based model. The
model executes successfully if the R* value is more than 0.9
and the error term values are modest. The ANN model per-
formed admirably as a wear rate predictor with an R* of
0.9328 and exceptionally tiny MAE, RMSE, and MSE values.
The ANN model with three hidden layers of 10 neurons
each, the “real” activation function, and an intermediate
regularization term (a=0.05) performed admirably with
the complex wear rate data. Again, other models significantly
outperformed the distance function-based KNN model when
dealing with complex wear data.

6.4. Prediction Performance Comparison. For AA7075,
AA7075-graphene composites, and AA7075-graphene com-
posites, we evaluated machine language algorithms for COF

and rate of wear prediction in dry conditions. The ML mod-
els trained with a decision tree (generalized decision tree,
GBM, RF) consistently produce improved prediction ability
for friction and wear rate when fed a categorical input. The
AA7075-graphene and AA7075-graphite composite ML
models showed statistically significant performance improve-
ments over the ML algorithms for the AA7075 base alloys.
Friction and wear parameters of composites made of AA7075
and graphite or graphene significantly impact the graphite
and graphene self-lubricating action in the AA7075 matrix.
Graphene and graphite percentages were significant in pre-
dicting wear and friction in studies of these composites. That’s
why our models made such precise forecasts. In the absence of
lubrication, the COF and wear rate for AA7075 are susceptible
to changes in material hardness and other tribological char-
acteristics. The dataset reflected the complexity of the link
between input and output variables and the degree to which
they were unknown. As a result, the ML models were less
effective than their graphene and graphite counterparts in
AA7075.

6.5. Impact of the Input Parameters on Forecasting of Wear
Rate. Wear on AA7075-graphene nanocomposites can be
predicted using the RF model’s feature significance attribute
(Figure 11). All inputs with a score greater than zero affect
the wear rate. We found that the concentration of Gr, its
hardness, and the usual load best predict wear using feature
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importance research. Graphene content is the most critical
element in AA7075-graphene nanocomposites, with a direct
correlation between increased mechanical characteristics and
a self-lubricating effect. Since hardness was a brake on mate-
rial loss during tribological interactions, it was an essential
factor in wear prediction. Because surface hardness resists
material removal rate more than bulk strength, that hardness
substantially influences friction and wear more than TS. The
standard load plays a crucial role in forming and maintaining
the graphene coating on the tribosurface and controlling the
transition from moderate-to-severe wear. Graphene type was
more influential than COF in determining wear rate in
AA7075-graphene nanocomposites. The type and amount
of graphene layers and the self-lubricating action can influ-
ence the porosity, flexibility, hardness, strength, and connec-
tivity of AA7075. Depending on its shape during tribological
interactions, microcracking and brittle fracture can be
induced in graphene. Wear in AA7075-graphene nanocom-
posites may be significantly impacted by all these factors.

The COF and wear rate of AA7075-graphene nanocom-
posites can be predicted with up to 96% accuracy using the
ML models constructed. Without conducting any experi-
ments, we can reliably predict COF and wear for various
loading scenarios and material properties. Additionally, these
algorithms can narrow in on the most crucial elements affect-
ing wear and friction in AA7075-graphene nanocomposites
by analyzing data from over 20 individual tests. To refine the
AA7075-graphene nanocomposites synthesis procedure and
identify optimal working conditions for actual use.

7. Conclusion

Self-lubricating AA7075-graphene nanocomposites had their
graphene content analyzed to determine how the additive
affected the materials’ inherent qualities. We also performed
a phenomenological study of wear and friction behavior in
dry sliding contacts between these nanocomposites and
AA7075-graphite nanocomposites to further understand the

mechanisms. The ML models aim to help researchers deter-
mine the optimal conditions for future tribological testing of
these composites in various settings.

(1) The addition of graphene to AA7075-graphene
nanocomposites increased their hardness and tensile
strength in several ways.

(2) The formation of a graphene-rich layer at the tri-surface
is responsible for the decrease in wear rate and COF
observed in the AA7075-graphene nanocomposites.

(3) Graphene concentrations in AA7075 composites anal-
ysis and results show that COF reductions are numeri-
cally similar at much lower graphene levels in the
AA7075 composites as the reinforcing phase when
tested under the same circumstances. Comparing
wear rates across different nanocomposites found
minimal variation.

(4) The models developed to anticipate wear and friction
in AA7075-graphene nanocomposites performed
exceptionally well. An ANN (R*=0.9341, RMSE =
0.0273, MSE =0.0009, and MAE=0.0105) model
providing the best forecasting for wear and GBM
(R*=0.9472, RMSE = 0.0246, MSE =0.0007, and
MAE =0.0105) while the decision tree (R*=0.9642,
RMSE =0.0367, MSE =0.0013, and MAE =0.0225)
and RF (R*=0.9637, RMSE =0.0375, MSE =0.0014,
and MAE = 0.0252).

(5) Using ML, COF’s most essential determinants were
load, graphene content, and hardness. But the wear
behavior of AA7075-graphene nanocomposites was
most affected by graphene content, average load, and
hardness.

Data Availability

All data supporting the findings of this study are included in
this article.
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